Distributed model of peritoneal fluid absorption.

نویسندگان

  • J Stachowska-Pietka
  • J Waniewski
  • M F Flessner
  • B Lindholm
چکیده

The process of water reabsorption from the peritoneal cavity into the surrounding tissue substantially decreases the net ultrafiltration in patients on peritoneal dialysis. The goal of this study was to propose a mathematical model based on data from clinical studies and animal experiments to describe the changes in absorption rate, interstitial hydrostatic pressure, and tissue hydration caused by increased intraperitoneal pressure after the initiation of peritoneal dialysis. The model describes water transport through a deformable, porous tissue after infusion of isotonic solution into the peritoneal cavity. Blood capillary and lymphatic vessels are assumed to be uniformly distributed within the tissue. Starling's law is applied for a description of fluid transport through the capillary wall, and the transport within the interstitium is modeled by Darcy's law. Transport parameters such as interstitial fluid volume ratio, tissue hydraulic conductance, and lymphatic absorption in the tissue are dependent on local interstitial pressure. Numerical simulations show the strong dependence of fluid absorption and tissue hydration on the values of intraperitoneal pressure. Our results predict that in the steady state only approximately 20-40% of the fluid that flows into the tissue from the peritoneal cavity is absorbed by the lymphatics situated in the tissue, whereas the larger (60-80%) part of the fluid is absorbed by the blood capillaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A distributed model of bidirectional protein transport during peritoneal fluid absorption.

The present article provides a theoretical description of the changes of interstitial hydrostatic pressure, tissue hydration, and protein distribution in the tissue during a peritoneal dwell with isotonic fluid. The mathematical model is based on the concept of uniformly distributed capillary and lymphatic systems within a deformable, porous tissue. Protein transport was analyzed for diffusive ...

متن کامل

A mathematical model of peritoneal fluid absorption in tissue.

To investigate how water flow and interstitial pressure change in tissue during a peritoneal dwell with isotonic fluid, we developed a mathematical model of water transport in the tissue. Transport through muscle alone (M) and through muscle with intact skin (MS) were considered for the rat abdominal wall, using various parameters for muscle and skin. Based on the concept of distributed capilla...

متن کامل

Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium.

Clinical and animal studies suggest that peritoneal absorption of fluid and protein from dialysate to peritoneal tissue, and to blood and lymph circulation, occurs concomitantly with opposite flows of fluid and protein, i.e., from blood to dialysate. However, until now a theoretical explanation of this phenomenon has been lacking. A two-phase distributed model is proposed to explain the bidirec...

متن کامل

Correlation between Ultrafiltration Coefficient and Effective Lymphatic Absorption Rate in Continuous Ambulatory Peritoneal Dialysis Patients: A Possible Paradigm Shift

Background: The relative contribution of transcapillary water movement and lymphatic reabsorption in peritoneal dialysis (PD) is a critical issue, particularly in patients with ultrafiltration failure (UFF). Based on routine results obtained from the PD Adequest 2.0 software, the present study aimed to re-evaluate the separate effects of transcapillary water movement and lymphatic reabsorption ...

متن کامل

Distributed Models of Peritoneal Transport

There are several methods to model the process of water and solute transport during peritoneal dialysis (PD). The characteristics of the phenomena and the purpose of modelling influence the choice of methodology. Among others, the phenomenological models are commonly used in clinical and laboratory research. In peritoneal dialysis, the compartmental approach is widely used (membrane model, thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006